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The scaling properties of the conductance of a Kondo impurity connected to two leads that are in or out of
equilibrium has been extensively studied, both experimentally and theoretically. From these studies, a consen-
sus has emerged regarding the analytic expression of the scaling function. The question addressed in this Brief
Report concerns the properties of the experimentally measurable coefficient � present in the term describing
the leading dependence of the conductance on eV /TK, where V is the source-drain voltage and TK is the Kondo
temperature. We study the dependence of � on the ratio of the lead-dot couplings for the particle-hole sym-
metric Anderson model and find that this dependence disappears in the strong-coupling Kondo regime in which
the charge fluctuations of the impurity vanish.

DOI: 10.1103/PhysRevB.80.233103 PACS number�s�: 75.20.Hr, 71.10.Hf, 75.75.�a, 73.21.La

Universality of scaling plays a central role in the Kondo
effect1 which describes the interaction of a magnetic impu-
rity with conduction electrons. As the temperature T is low-
ered below a crossover scale, denoted by the Kondo tempera-
ture TK, the impurity spin becomes screened by conduction
electrons. Recent advances in nanofabrication techniques
now allow for the experimental exploration of Kondo phys-
ics by attaching two conducting leads, which we denote left
L and right R, to a smaller region, such as a semiconductor
quantum dot �QD� or a single-molecule transistor �SMT�,
each of which may act as an effective impurity spin. One
typically applies a voltage difference V between the leads
and measures the differential conductance G�T ,V�=dI /dV
which grows at low T and V due to Kondo correlations. This
behavior is expected to be described by a scaling form
G�T ,V�=G0F�T /TK ,eV /TK�, where G0=G�0,0� and F is a
universal scaling function. The scale TK can vary between
100 mK in QD devices2,3 and 150 K in SMTs.4,5

Such devices are more accurately described by the Ander-
son model �AM� which takes into account charge fluctua-
tions of the impurity. The Kondo model �KM� is recovered
from the particle-hole symmetric AM in the limit U→�,
where U is the charging energy in the AM. For both models,
for low energies T ,eV�TK the leading corrections to the
conductance are given by �up to a redefinition of TK�

F�T/TK,eV/TK� = 1 − cT� T

TK
�2

− �cT� eV

TK
�2

+ . . . �1�

with various values predicted for the coefficient � from the
AM �Refs. 6–9� and KM.10–13 Recently, � was measured by
two experiments, one done by Grobis et al.14 on a quantum
dot device and the other done by Scott et al.15 on an en-
semble of single-molecule transistors, where the QD and
SMTs were tuned to the Kondo regime T ,eV�TK. In the QD
experiment, TK varied from 150 to 300 mK by varying the
gate voltage in a single device, and a value �QD
=0.1�0.015 was measured. In the SMTs experiment, TK
ranged from 34 to 155 K in 29 different devices, and �
showed a systematic deviation from the QD value, �SMT
=0.051�0.01 �see Refs. 14 and 15 for the precise fitting
range�. Various possible explanations were pointed out for

the systematic difference of � in SMTs. Among those, the
relative asymmetry of the L and R coupling �denoted by A in
Eq. �4�� was considered as a relevant issue.15

With this experimental motivation, we calculate � for ar-
bitrary device asymmetry. We consider the particle-hole
symmetric Anderson model �SAM� which generically in-
cludes charge fluctuations in the impurity. We find that � is
independent of the degree of L-R asymmetry only in the
Kondo limit. Once charge fluctuations are included, there is a
dependence of � on the L-R asymmetry. We compare our
result to previous theoretical results and also comment on the
relevancy to the experiments. We find that the low value of �
measured in SMTs cannot be accounted for within the sym-
metric Anderson model.

Our phenomenological approach consists of a modifica-
tion of Noziéres Fermi-liquid �FL� theory16 to account for
charge fluctuations in the SAM. We pay special attention to
the effect of shifting the Kondo resonance at finite voltage
�see Eq. �15��. Our result is a generalization of Oguri’s cal-
culation of the conductance which used a nonperturbative
result for the Green’s function of the SAM,8 and is found to
reduce to Oguri’s result for the special case he considered.

The model of a single Anderson impurity connected to L
and R leads is

H = H0 + Hd + Ht,

H0 = �
k�

�
i=L,R

�kck�i
† ck�i, �2�

Hd = �d�
�

d�
†d� + Ud↑

†d↑d↓
†d↓,

Ht = �
k�

�
i=L,R

vi�d�
†ck�i + H.c.� , �3�

where d� annihilates an electron with spin � in the quantum
dot d level, ck�i annihilates a conduction electron with mo-
mentum k and spin � in the i=L ,R lead, �k=�vFk, and vF is
the Fermi velocity. In the SAM that we will consider here,
�d=−U /2. It is convenient to define the L-R asymmetry pa-
rameter
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L-R asymmetry:A =
4	L	R

�	L + 	R�2 . �4�

The chemical potentials 
i�i=L ,R�, satisfying 
L−
R=eV,
are measured relative the Fermi level defined at zero voltage.
Then the ratio

B = − 
L/
R �5�

describes the relative voltage drop across the L and R tunnel
junctions which could depend on the capacitive couplings of
the leads and QD or SMT and which we treat as a second
L-R asymmetry parameter.

One can define the retarded d Green’s function as GR���
=−i�0

�dtei�t	d�t�d†+d†d�t�
. With these definitions, the cur-
rent is given by the Meir-Wingreen formula,17

I =
2e

h
A�

−�

�

d��fL − fR���− Im GR���� �6�

with f i= f��−
i��i=L ,R�, f���= �1+exp�� /T��−1, �=	L+	R,
	i=�vi

2�i=L ,R�, and  is the density of states in the leads.
Below, we formulate an effective theory for the SAM that

allows us to obtain the Green’s function GR��� for � ,T ,eV

��̃ ��̃ is the characteristic energy scale defined more ex-

plicitly below Eq. �8�. In the Kondo limit �̃→TK�. We define
linear combinations of the annihilation operators for the L
and R leads as

ak�
�s� =

vLck�L + vRck�R

v
, ak�

�p� =
− vRck�L + vLck�R

v
, �7�

where v=�vL2+ vR2. Only the s-wave particles are coupled
to the d level since Ht=�k�vd�

†ak�
�s�+H.c..

The notion of a local FL, due to Noziéres,16 was origi-
nally applied to the Kondo model but is actually more gen-
eral and can be applied to the AM and, in particular, to the
less complicated SAM. The quasiparticles of this FL theory
are simply scattering states whose incoming part coincides
with that of the the s-wave particles ak�

�s� �the precise defini-
tion is given after Eq. �10��. The theory itself consists of a
low-energy expansion of their scattering phase shift as a
function of energy � �measured from the Fermi level� and of
quasiparticle density n�,

�� = �0 +
�

�̃
−

�n�̄

�̃
+ . . . , �8�

where ↑̄=↓, ↓̄=↑, �̃ is the energy scale over which the phase
shift varies in the SAM, and � is a coefficient to be deter-
mined. For the general AM, the scattering phase shift at the
Fermi energy �0 can be extracted using the Friedel sum
rule18 �0=Im�ln GR�0� T=eV=0�−� combined with exact re-
sults for GR. In the SAM, particle-hole symmetry and the
adiabatic connection to the U=0 case implies �0=� /2.

The Wilson ratio R= ��� /�� / ��Cv /Cv� is the ratio be-
tween the relative impurity contribution to the susceptibility
and to the specific heat. It can be calculated from the phase-
shift expansion, Eq. �8�, to be16

R = 1 + � . �9�

We will use this equation to determine � in terms of R which
is a parameter describing the amount of charge fluctuations
in the SAM.

As an equivalent way to determine �, consider an en-
hancement of the Fermi energy by an amount � by adding to
the Fermi sea a density of quasiparticles n�= ���. For the
KM, Noziéres argued that at energy �, corresponding to the
new Fermi energy, one has ��=�0 since the Kondo resonance
is tied to the Fermi level. Using Eq. �8� and n�̄=�, this
implies �=1. This argument should be modified for the AM;
a shift of the Fermi level by this transformation also implies
that �d→�d−�, as measured relative to the new Fermi level
at +�. Therefore a finite amount of charge e�nd enters into
the d level which, for small �, is given in terms of the charge
susceptibility �nd=−

dnd

d�d
�. Here nd=��	d�

†d�
. Due to the
Friedel sum rule,18 the phase shift at the new Fermi energy
after this transformation is different than �0 and is given by
��=�nd /2=�0− �� /2�

dnd

d�d
�. Using Eq. �8� and n�̄=� implies

�=1+ ��̃
2

dnd

d�d
.

This phase-shift expansion can be equivalently described
by a Hamiltonian,

H = H0�a�p�� + H0�b� + �H ,

�H = −
1

2��̃
�
kk��

��k + �k��bk�
† bk��

+
R − 1

�2�̃
�

k1k2k3k4

:bk1↑
† bk2↑bk3↓

† bk4↓: , �10�

where H0���=�k��k�k�
† �k���=a�p� ,b�. This Hamiltonian de-

scribes the two last terms in the phase-shift expansion Eq.
�8�.

The first term in Eq. �8�, �0, is incorporated into the defi-
nition of the b particles in Eq. �10�. These b particles are
single-particle scattering states that describe an incoming
s-wave suffering a scattering phase shift �0 at the boundary.
Formally, to define the b particles, one uses the unfolding
transformation19 where ��

�s��x�= �1 /2���dke−ikxak�
�s��x� �

−� ,��� is a chiral field describing an s-wave scattering state
with the left moving convention such that x�0 is the incom-
ing part and x�0 is the outgoing part, x=0 being the bound-
ary. From the definition of the phase shift �0 we have
��

�s��0−�=e2i�0��
�s��0+�. We define the b particles in terms of a

scattering state with �0=� /2,

��
�b��x� = ��

�s��x�sgn�x� �11�

and its Fourier modes bk�=�dxeikx��
�b��x�.

Now consider eV�0. As long as eV��̃ the system re-
mains in the vicinity of the fixed point and the state at finite
eV can be treated within the FL theory as a state with a
nonthermal distribution of quasiparticles. We first consider
single-particle scattering states incoming from lead i=L ,R.
In second quantization those particles are annihilated by
�ck�i�in. The occupation of those incoming waves is simply
	�ck�i

† �in�ck���i��
in
=�kk������ii�f i��k�. Using Eq. �7�, and the
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fact that before the scattering region �x�0� the wave func-
tions of states ak�

�s� and bk� coincide, we have13

�ck�L�in = �vLbk� − vRak�
�p��/v ,

�ck�R�in = �vRbk� + vLak�
�p��/v .

This gives the nonequilibrium distribution function for the b
particles,

	bk�
† bk���
 = �kk������	LfL��k� + 	RfR��k��/� . �12�

Since the occupation of the b particles differs from the one
defined at T=eV=0, the second term of �H generates a con-
stant elastic scattering

�R−1�n�̄

�2�̃
�k1k2�bk1�

† bk2�, where

n�̄ = �
k

	:bk�̄
† bk�̄:
 = �	L
L + 	R
R�/� . �13�

As a result, the phase shift at energy � relative to the Fermi
energy is given by �see Eq. �8��

�s��� =
�

2
+

� − 
K

�̃
, �14�

where 
K is a nonequilibrium shift of the resonance,


K = �R − 1��	L
L + 	R
R�/� . �15�

This shift can be nonvanishing if eV�0 and U�0 �or
equivalently R�1�. In the Kondo limit, R=2, Eq. �15� im-
plies that the resonance position 
K shifts together with the
average chemical potential 
̄= �
L+
R� /2: under 
̄→ 
̄
+�
 at fixed eV, Eq. �15� gives 
K→
K+�
.

In order to calculate the current using the phenomenologi-
cal Hamiltonian Eq. �10�, one can use the Meir-Wingreen
formula, and relate the Green’s function GR��� to the s-wave

T matrix, Ts���=vGR���v. One can define a T matrix, T̃, for
the b particles due to �H. It has an inelastic part denoted by

T̃in. The relation between Ts and T̃, accounting for the small

inelastic term T̃in, reads12

− �Ts��� =
1

2i
�e2i�s��� − 1� + e2i�s����− �T̃in���� . �16�

The leading contribution to T̃in originates from the diagram
shown in Fig. 1, containing three propagators of b particles
whose occupation is given by Eq. �12�. We find, using the
Keldysh technique,

− � Im T̃in��� =
�R − 1�2

4�̃2
� d�1d�2d�3�1 + t��2�t��3� − t��1�

��t��2� + t��3������ + �1 − �2 − �3�

=
�R − 1�2

2�̃2
��2T2 + �� − �eV�2 + �eV�23A

4
� ,

�17�

where t���=1–2�	LfL���+	RfR���� /� and �= �	L
L
+	R
R� / ���
L−
R��= �B	L−	R� / ��1+B���. Plugging Eqs.
�14� and �17� into Eq. �16� and using the Meir-Wingreen

formula Eq. �6�, with GR���=v−2Ts���, we obtain the conduc-
tance in the scaling form of Eq. �1� with G0= 2e2

h A, cT

= �2�1+2�R−1�2�
3 , TK→ �̃, and

� =
9

2�2���R2 − 1�
1 − B

1 + B
+

2 + �R − 1�2

3

1 + B3

�1 + B�3

+ 3�R − 1�2��2 +
1

4
A��� �1 + 2�R − 1�2� . �18�

The coefficient � can be expressed as a function of three
independent variables such as the Wilson ratio R and the L-R
asymmetry parameters A and B. In general, � depends on the
the L-R asymmetry parameters however, in the strong-
coupling limit U→�, equivalent to R→2, this dependence
completely disappears from Eq. �18� and we obtain ��R
=2�= 3

2�2 =0.1519. In this limit, �̃→4��u /2� exp�−�2u /8
+1 / �2u�� which is the known expression for TK, where u
=U / ����.

The value of � measured in QDs can be accounted for by
charge fluctuations due to finite U since, for R�2, Eq. �18�
gives ��R ,A ,B� in the range 3 /4�2���3 /�2. Since one
can tune the gate voltage in QDs corresponding to a continu-
ous tuning of �d, it is plausible that the SAM applies at one
value of the gate voltage corresponding to maximal conduc-
tance. However the value �SMT=0.051�0.01 measured in
SMTs is lower than the expectation from the SAM. We note
that a value �=0.157�0.005 was also measured20 in
Al /AlOx /Sc planar tunnel junctions at low temperatures21

and can be accounted for in our theory.
We compare Eq. �18� to the results of other approaches

for the KM and SAM. First, our result is fully consistent with
the results of Oguri8 based on Ward identities, however he
concentrated on the special case of A=B=1; Kaminski, Naz-
arov, and Glazman13 find �KNG= 3

8�2 for the KM for any A;
Konik, Saleur, and Ludwig7 find �KSL=4 /�2 for the SAM
for A=1 and large U /�; Pustilnik and Glazman12 find for the
KM for A�1, �PG= 3

2�2 ; Rincón, Aligia, and Hallberg9 stud-
ied the SAM for the case B=	R /	L. A mistake was found in
Eq. �10� in their paper whereas the corrected formula22

G
G0

B=	R/	L
�1− �2�1+2�R−1�2�

3 � T

�̃
�2− 4−3A+�2+3A��R−1�2

4 � eV

�̃
�2 agrees

FIG. 1. Diagram used to calculate T̃in. Each line is a b-particle
propagator with the nonequilibrium distribution Eq. �12�.
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with our Eq. �18�. Given that �KSL, which differs from our
result, was obtained approximately and is not claimed to be
exact, and given the agreement with the exact formulation
due to Oguri,8 we are convinced of the validity of our re-
ported expression for �.

As another application of Eq. �10�, one can calculate the
shot noise S=�−�

� dt	��I�t� ,�I�
 for the SAM to leading order

in 1 / �̃, where �I= I− 	I
. At T=0 and A=B=1, using results
for S based on the effective Hamiltonian �H of Eq. �10� with
arbitrary coefficients,23,24 we obtain S= 4e2

h
1+9�R−1�2

12 � eV

�̃
�2. The

ratio

e� � S
2Ib

=
1+9�R−1�2

1+5�R−1�2 e, �19�

where Ib= 2e2

h V− I, can be interpreted as a backscattering
charge.24 This charge crosses from e�=e for R=1 �noninter-

acting resonance level� to e�=5 /3e for R=2 �Kondo
resonance�.23–25

In conclusion, we extended Noziéres Fermi-liquid
theory16 to account for charge fluctuations in the particle-
hole symmetric Anderson model and calculated the transport
coefficient � present in the term describing the leading de-
pendence on eV /TK. We included explicitly the effects of
L-R asymmetry of the device and discussed the relation to
recent experimental results.14,15

After this work was essentially completed, we became
aware of another work26 that obtains �= 3

2�2 for the KM with
arbitrary L-R asymmetry, consistent with our result in the
special case without charge fluctuations.
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